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The spin Hamiltonian has been developed for paramagnetic species found in crystalline sites
of low (less than axial) symmetry. A tensorial form of the Hamiltonian has been stressed in
order to emphasize its primarily mathematical origin and to clarify symmetry constraints.

The treatment of these constraints, due to both Kramers (time-inversion) and spatial symme-
try, is general without restrictive assumptions concerning the strength of the applied magnetic
field. It is only assumed that the field-dependent interactions of the states described by the
spin Hamiltonian with all other states can be treated as small perturbations. It has been shown
that the spin Hamiltonian possesses the symmetry of the actual Hamiltonian if and only if the
transformation matrices of the actual and fictitious spin states differ by at most a phase for
every symmetry operation. Specific applications are to those terms of the spin Hamiltonian
usually sufficient to describe the (approximately) orbital singlet states of a transition-metal ion
with a fictitious electronic spin s <5. However, the treatment may easily be extended to cover
other terms, including those involving external electric fields and nuclear moments. Guide~
lines for the analysis and solution of the Hamiltonian matrix have been set out. Certain special
reference frames of this Hamiltonian have been discussed, including and in particular the one
designated by the symmetry axes of the orthorhombic point groups. The form of the Hamiltonian
appropriate for this symmetry has been developed in detail. An operational definition of mag-
netic axes has been given and it has been shown that rotational studies can be effective in differ-
entiating between orthorhombic, monoclinic, and triclinic site symmetries, when the paramag-
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netic ions substitute into several crystallographically equivalent sites.

INTRODUCTION

Although crystalline hosts have often been used
in electron-spin-resonance (ESR) investigations,
few attempts have been made to extract the maxi-
mum information from the data, at least in the
case of the more complex paramagnets [such as
Fe(III)] found in sites of low symmetry. Fre-
quently spectra have been analyzed by means of a
spin Hamiltonian appropriate for a higher sym-
metry and involving an insufficient number of pa-
rameters. The resulting errors in the analyses
have been much larger than the experimental er-
ror, and opportunities to determine the site sym-
metries have been lost. In this work a general
theory is presented, emphasizing symmetry con-
straints on the Hamiltonian, which is applicable
to orthorhombic or lower symmetry. Specific ap-
plications are to systems described by fictitious
electronic spins of 3 or less.

In what follows, the conventions of Rose' per-
taining to rotations are adopted. Unless indicated
otherwise, transformations are passive. Summa-
tion over certain repeated indices will be assumed.
These indices are the labels of the components of
vectors, tensors, matrices, kets, and bras.

FUNDAMENTAL CONCEPTS

In a refined form of the spin-Hamiltonian method,

an n-dimensional block of the actual Hamiltonian
matrix is duplicated by the action of a function of
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magnetic field and angular momentum components
(the spin Hamiltonian) on a basis of angular mo-
mentum eigenkets with 25 +1=%. This angular
momentum is generally referred to as the fictitious
spin because it does not necessarily possess any
direct relationship to the variables of the system.
The spin Hamiltonian is not merely an operator
equivalent since actual states, possibly of a very
general nature, are replaced by pure spin states.

The problem of a paramagnetic crystal in an
applied electromagnetic field may conveniently be
treated by separating the total system into three
parts: the system for which the spin Hamiltonian
is to be defined, the (internal) environment of the
system, and the applied field(s). The system is
that portion of the crystal whose states contribute
to the resonance spectrum. When dilute crystals
are employed, the system may consist of the
paramagnetic electrons of some unit such as an
ion, as long as the energies of the paramagnetic
units are independent. It is not necessary to as-
sume that the paramagnetic electrons are restricted
to any one nucleus, but only that they do not en-
counter, to any measurable extent, the electrons of
another unit. Necessarily included in the system
are all magnetic nuclei encountered by the para-
magnetic electrons.

The environment of the system is the remainder
of the crystal whose states and variables are as-
sumed to be integrated out of the problem. The
symmetry of the environment is the only factor of
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importance here. With the use of doped single
crystals, this is given by the point group of the
paramagnetic site. There is no definite reason
for this point group to be identical to the corre-
sponding point group of the pure host crystal, es-
pecially if charge compensation is required. Be-
fore the external fields are applied, we can pre-
sume to have available the eigenkets | a}) of the
zero-field Hamiltonian 3°, Because of the com-
plexity of the problem few characteristics of these
kets can be determined. However, as will be
shown, knowledge of the transformation properties
of these kets with respect to the symmetry opera-
tors of the system is sufficient to allow a prediction
of the gross features of the magnetic resonance
spectra.

Magnetic resonance transitions occur between
states separated by increments of energy which are
small compared to most atomic and molecular pa-
rameters. Most states of a paramagnetic system
are therefore removed from direct observation.
With the introduction of an external magnetic field,
excited states cannot be ignored in the most ac-
curate treatment. If these states are removed from
the » observable states by energies which are large
compared to the field-dependent terms of the Hamil-
tonian, the interactions in question can be obtained
by perturbation theory. Hereafter it will be as-
sumed that » is chosen to include all excited states
for which this is not true. These interactions are
accounted for by assuming that the observable
states are perturbed, giving the general kets

|a;)=|ad)+ jE” |a%ya;; (B), 6))

withi=1,...,n. The matrix of the real Hamiltonian
3¢(B) within these kets is denoted H(B). The prob-
lem reduces to solving this matrix.

Kramers Transformation

Time inversion, first investigated by Kramers?
and treated mathematically by Wigner, * among
others, occupies a central role in the theory be-
cause it leads to an elegant and simple means of
deducing general features of the spin Hamiltonian. % ®
It is shown elsewhere® 7 that an antilinear operator
(%, the Kramers operator) can be found which
produces a transformation, for the stationary states
of the system, analogous to classical time inver-
sion. The position operators are unchanged, while
momenta, including spin, change sign. Since
zero-field Hamiltonians of the systems dealt with
here are even functions of momenta, they commute
with X and their eigenkets possess well-defined
Kramers symmetry. With appropriate choices of
phase, ® the Kramers conjugates of angular mo-
mentum eigenkets are

OF LOW-SYMME TRY...
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x |jm)y=(=1Y"j-m) . (2)

The eigenkets of 3° belong to one of two possible
classes, for which %%=+1. The sign depends on
whether the system consists of an even or odd num-
ber of fermions. Using this property of X, itis a
simple matter to show that from any 2j +1 eigenkets
of 3°, an orthonormal basis may be found with the
kets possessing the Kramers conjugates of Eq.
(2).° In general, the j and m are merely labels.
An exception to the above occurs when 2j +1 is
evenand X2 =+1,

Since the Hamiltonian 3¢(B) is invariant to time
inversion while B changes sign, the terms in
3¢(B) must be even functions of momenta and field
and we have X5¢(B) % T=3¢(- B). The elements of
the matrix H (B) are

H‘k(§)=(a,|3(i(§) Iak)z(a,I(JC'SC)JC(ﬁ)l a) ,

and their complex conjugates are
Hu;(ﬁ)* = ((0[, |3ct):}c(_ B.)("K | ag)) .

Let X, be the product of ¥ with an operator which
reverses the direction of the external field. Then
3(B) commutes with X ; and we have

Hy(- BY* = (|5 ) 30(B) (3¢ 4| ) 3

The distinction between % , and X is important for
the kets of Eq. (1). SinceX Z=%%=x1, we can
again find an orthonormal basis which possesses
standard Kramers conjugates with the same ex-
ception as before. Let the kets of such a basis be
the

lsm)=|a;)Aip . (4)

The label s is used instead of j to indicate that these
are not necessarily eigenkets of some angular
momentum.

The importance of these matters lies in the
possibility of having real states behaving the same
way with respect to the Kramers transformation
as the pure spin states of the spin-Hamiltonian
method. If this is true then the spin Hamiltonian
must commute with X,. There is actually con-
siderable freedom in the choice of the A;,; how-
ever, it will be seen that the choices are limited
if it is desired to take advantage of spatial sym-
metry.

Irreducible Angular Momentum Tensors

The use of angular momentum tensor operators
has become widespread in magnetic resonance
studies because they provide the means of expres-
sing the spin Hamiltonian in its most convenient
form. In this section the operators tabulated by
Koster and Statz!® are presented in order to clarify
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their properties. The operators T:(:I') are defined
to be irreducible with respect to rotations. Their
transforms are

THT) =0 x(w) TE (F) @ p(w)' = THF) DE, (w) . (5)

They are said to be of the first kind with respect

to J , the total angular momentum of the system.
An equivalent definition, involving the commutators
of the tensor components with :f, has been given by
Racah.!! Tensors of the second kind commute
with J and the rotation operators @ z(w). The
first-order tensor is chosen to be J itself, with
the contrastandard (Fano and Racah’s definition
irreducible components

T%J=J0=Ju T£11=J11= :F(Z)-l/a(Jx;’l:Jy) .

12)

The tensors of order %k are chosen to be the irre-
ducible polynomials in the components of J of
degree k and given by the coupling relations

T = T Tt (mtr | kq) , : (6)

for =1+¢. The T notation is reserved for tensors
of this type. Since the Tk =(J,,)* are independent
of the individual values of / and ¢, it follows from
Racah’s relations that the entire set of a given or-
der is unambiguously defined by the above. These
operators possess the following propertieslaz

(i) Their Hermitian conjugates are (7%)"
=(=1)Tk.

(ii) Their Kramers conjugates are (7})*
=(=1)* T,

(iii) Their matrices are given by the Wigner-
Eckart theorem and are invariant to rotational
transformations of the reference frame.

(iv) When the

Gm |T¢|jm -k)
=(2j+ 1)V 2(m|kkim —k) G || T*]]5)

are evaluated, the reduced matrix elements are
found to be

W RUEisren! 7R
GlT* iy=2 [ @j -(k)]&zki)nn]

for £+0, and unity for =0, where (2 -1)!!
=1X3X5X***x(2k -1).

With the use of the Wigner-Eckart theorem and
the unitary nature of the coupling coefficients, it
can be shown that the (2j +1)? matrices for which
k < 2j constitute a complete, linearly independent
set. This is the foundation of the spin-Hamiltonian
method because a suitable linear combination of
these matrices reproduces any square matrix of
dimension 2j +1.

SPIN HAMILTONIAN

The exact form of the n-dimensional matrix
g(-ﬁ) depends not only on the choice of reference
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frame, but also on the transformation matrix A
of Eq. (4). In general, the elements H,,,. are
power series in the B; and may be conveniently

.decomposed in terms of irreducible tensor com-

ponents,
©

Hyp = 20 27 Flit)pe C"(B) . )
= u

The C**(B) are the standard components of irre-
ducible tensors of the second kind and are them-
selves power series in the B;. If the field-depen-
dent terms of 5¢(B) are linear in B, the C** result
from 7th-order perturbations with » > and » +1
even. Their rotational transforms and conjugates
are given by

CH(B') = C*(B) D, (w)* ,
c®'=(-1)“Cc(B),
“K; C'“(-B.)x f-l = (_ l)l»ucl-u(ﬁ) .

The F(lu),w are elements of n-dimensional field-
independent matrices and may be expressed as

2
F(lt) =Z€ bR (Gjm | TR |jm" ) ,
k=0
as long as n equals 2j +1. Association of each of
the |sm ) with the corresponding angular momentum
ket defines the spin Hamiltonian ¥¢,. We have

Hyppe = (Hs)mm' =(jm [3€s|jm')
and (8)

30, = 4% 27 bRTR(F) C'U(B) .
k=0 1=0
The Hermitian property of the matrix g(ﬁ) requires
that the parameters possess the form

b= (= 1) OL)* . (9)

Although it often happens that s=j coincides with an
approximate quantum number of the system, it
should be emphasized that J may have little physical
significance. Hereafter, it will be referred to as
the fictitious spin or just spin vector.

A unitary change of basis in spin space generates
a similarity transformation upon the spin-Hamilto-
nian matrix H,. For example, substitution of the
spin kets of a rotated reference frame gives
H/=D/(w)'H,DYw). Because of the invariance of
the (jm |T%|jm'), this similarity transformation
is obtained by substituting the Bj=R,;(w) B, and the

(%) = D}, (w)* b3*? Dl (w) (10)

for the B; and the b¥¢. Although we have H' =H_,
if A’=AD’(w)is substituted for Ain Eq. (4), the
|sm ) are not necessarily the appropriate kets of
the rotated frame.
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Because the matrix Es(ﬁ) is defined for a certain
reference frame, it will be useful to have available
matrices which are functions of the field components
B; of rotated frames. Sincethese matricesdescribe
the same physical situation, they must be similar
to Hs(ﬁ). Convenient choices are the §; defined
abo_ve, which are obtained by rotations in spin and
real space, as long as the spin Hamiltonian is as-
sumed invariant to such transformations. In this
sense, the reference axes of fictitious spin and
real space are always assumed to coincide. The
parameters are “double” irreducible tensors with
respect to these rotations; their transforms are
given by Eq. (10). As will be seen, the advantage
obtained by these admittedly arbitrary choices is
that possible similarities between fictitious spin
and real space are emphasized.

Symmetry Constraints

The general spin Hamiltonian contains (25 + 1)2
independent parameters for each C'*(B). I order
to determine to what extent possible environmental
symmetry reduces this number, the transformation
properties of the real kets |sm ) must be estab-
lished. If the variables of the system are trans-
formed from one reference frame to another, °
is unchanged provided that the environment is iden-
tical in the related frames. Let the operators
which produce these transformations, the spatial
symmetry operators of the paramagnetic site, be
denoted ®. They commute with 3¢°, but not with
3e(B), since they do not act on the field components.
However, 3¢(B) will commute with the ® ; which are
defined to be products of the ® with operators which
transform the field. If the transformed components
are Bj = P, B, it must be that ®3¢(B)=3e(P-' B)® .
Consideration of the elements of H(ﬁ) gives

H e (B) = (sm | 3¢(B) [sm'y=(sm |(@1®)5e(B)|sm")
= (¢sm 2N 3e(@-'B) (¢ [sm")) .

Now if the field is reoriented so that the new com-
ponents equal the B;, we have

Hype (B") = (s |@ ) 3B) (@ ;| sm")) . (11)

Since the reorientation leaves the physical situation
unchanged, H(B’) must at least be similar to H(B),
and the transformation

(Pflsm)= |sm,>Um'm

must be unitary. From Eq. (1) it is seen that this
transformation is the same as that which results
from the ? acting on the eigenkets of 3°, as long
as the latter follow Eq. (4). Therefore, the per-
turbed kets span the same irreducible representa-
tions (of the group of operators @ ;) as do the
eigenkets of 3c°.

In the following, the @, are limited to the rota-
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tion operators ® ps(w). Using the same notation for
the analogous operators of spin space, which in-
volve the fictitious spin J rather than the total
angular momentum of the system, we have

@ Rf(w) l]m) =(PR(‘-U) ljm )= |]'m' ) Dfn' ()

There is no reason for the D’(w) to equal the
transformation matrices U(w) of the real kets.
The symmetry transformations of 5¢(B) give the
matrices

- H(B") =H(B') = U(w)' Hy(B) Uw) ,

with elements ((jm |® &; )3CL(® gsljm')), where

® ry ¥C,=3C,® pe. On the other hand, the transfor-
mations in spin space chosen in the preceding sec-
tion give the matrices

H,(B)' = DY(w)'H,(B) D(w) ,

with elements ((jm |® %,)3C(® gs1jm’)). In order
for the spin Hamiltonian to commute with the

® gs(w), the two similarity transformations must
be identical [H,(B)= H(B)'] and the matrix H,(B)
must commute with D’ (w)U(w)' A necessary and
sufficient condition for this is

U(w)=e'*“ D (w) , (12)

as long as JC, contains operators of odd k. (It is
easily seen that the only matrices which commute
with all 2k +1 matrices having elements

(jm|T% jm'), k odd, are multiples of the unit ma-
trix.) If the relation (12) holds for every symmetry
operation, then the spin Hamiltonian possesses all
the symmetry of the real Hamiltonian. A similar
argument indicates that the spin Hamiltonian com-
mutes with the Kramers operator X ; unless j is a
half-odd integer and the system consists of an even
number of fermions. In the latter case, ¥ pos-
sesses an unusual form. *

If the real and spin kets span the same irreducible
representations, the U(w) and D’(w) are at least
similar and can be made equal “with a suitable choice
of the A,,, of Eq. (4). We do not have to check on
the validity of relation (12) for all symmetry opera-
tions, but only for the generators of the group.

The most complex group under discussion is the
octahedral group O which possesses two genera-
tors.'® As examples, it can be shown that if the
spinstates transform as T'y(j=1)or I'¢(j = 3), rela-
tion (12) holds for the entire group even though the
real states transform as I'; (s=1) or I';(s=3

One notable exception occurs for I';, T'y (j=2) and
T, Ty (s=3).

Constraints on the b*? are established because the
symmetry operators do not transform these field-
independent numbers. In order to have 3C,=¥ ,3C,X ;,
it must be that

bﬁlq= (_ l)kﬂm-u (b-ukl-q)* — (___ 1)k+l b:lq . (13)



2128 BEEM, HORNYAK,
The field and operator tensors must have the same
parity. From symmetry rotations, we obtain

bﬁ” = Dﬁq(w)"‘ bglprm(w) = (bﬁl")' .

The Euler angles (aBy =w) of these rotations are
simplest when the original reference frame of
g(ﬁ) is chosen to coincide with symmetry axes.

A reflection through a plane is equivalent to an in-
version followed or preceded by a rotation of 7
about the plane’s normal which passes through the
inversion center. The operator and field com-
ponents are functions of pseudo-(axial)-quantities,
and are unchanged by inversion. Therefore, the
action of a symmetry reflection on JC, is equivalent
to the rotation. Similarly, the action of an im-
proper rotation is equivalent to that of the corre-
sponding proper rotation, and the possible forms
of the spin Hamiltonian of Eq. (8) are determined
by the proper point groups.

The details of the system have been left un-
specified because the form of the spin Hamiltonian
depends only on the number of states involved,
and the symmetry of these states and the actual
Hamiltonian. When nuclear moments are present,
J can be considered the total fictitious spin of the
system. Alternatively, it is convenient to use
“uncoupled” kets (eigenkets of fictitious electronic
and nuclear spin), with 3¢, being a product of as
many different tensor operators as there are in-
dependent parts of the system. This introduces a
great many additional terms, but without any
fundamental difference in treatment. An external
electric field E is even (odd) with respect to time
(space) inversion. If such a field is applied, or if
ligand nuclear moments are present, certain con-
straints must be suitably modified. In particular,
the constraints imposed by reflections and improper
rotations do not duplicate those of proper rotations
for the parameters of terms involving E or the
ligand operators.

(14)

Analysis of Hamiltonian

For the remainder of this work it is assumed
that s is the fictitious electronic spin label.
Treating terms involving nuclear operators as
perturbations upon the electronic spin Hamiltonian
rarely constitutes a problem. In addition, it is
assumed that 3C, is linear in the magnetic field with
c%=1, c'=pB% C'™=0, 1>1. The Hamiltonian of
Eq. (8) is then

zf) [k T (J) + 0% T (F) B ] . (15)

k=0
From Kramers symmetry, & must be even in the
first part, odd in the second. The Zeeman term
(2=1) is written in terms of Cartesian components
as

Bogi; BiJ; (186)
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where E is the electronic g tensor. The £=3,5
terms are those first postulated by Bleaney. ¢
Since their presence has rarely been detected, they
will not be included in the treatment. The terms
with £ =0, 2 together constitute the quadratic form

(1)

The quantity Dis usually referred to as the zero-
field splitting tensor. The term with 2=4 (al-
lowed for s > 2) is not negligible for Fe(IIl), given
normal experimental accuracy. The quantities

E and D (along with hyperfine tensors) are second-
rank Cartesian tensors with respect to the arbitrary
transformations defined earlier. WithE as an ex-
ample, we have

(gn)' =R;; R (18)

as the analog to Eq. (10), where R(w) is the vector
transformation matrix. The rotational symmetry
constraints are g'=g.

Computation of the spin-Hamiltonian matrix by
use of the Wigner-Eckart theorem is quite simple,
amounting to a determination of the appropriate
coupling coefficients. The general matrix of zero-
field parameters for s =3 is presented in Table I.

The availability of relatively simple matrix
diagonalization computer programs, for real
Hermitian matrices, eliminates much of the need
for perturbation equations. In conjunction with
transformations of the parameters, these programs
provide excellent means of fitting magnetic reso-
nance spectra. The g tensor is very nearly iso-
tropic in many problems, particularly those in

Dy;dd; .

TABLE I. The zero-field spin Hamiltonian matrix for
s=%.
I TR i B I |
1 2 4 7 11 16
3 5 8 12 17
- 6 9 13 18
=S 10 14 19
15 20
21

(1) - (21)=3[61/2b20—% (701/2)b40]
(2) = (20)= - (20)1/2[b21 +_(;_ (14)1/2b41]
@) = (15)=61/2% 18 (70)1/%*

@ = 19)=102p%+3 1)1/ 25"
(65) == (14)=— (8)!/ %% + 12 (28)!/ 2!
@) =—(18)=—(180)!/%*

@®) = (13)=181/2[b22—%(‘7)“21242]
1= @7 =180!/%4

© = (12)=(16)=0

6) = (10)=0, by choice
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which the electronic ground states are approximately
orbital singlets. In such cases, it is convenient to
assume isotropy at the start. The Zeeman inter-
action possesses its simplest form when the field
direction is taken as the z axis. The diagonal zero-
field parameters (g=0) of such a reference frame
can then be estimated using the high-field transi-
tions. It may be that the transitions of a given
orientation do not depend on the off-diagonal 5*

to any great extent. However, the diagonal pa-
rameters of other orientations are functions of

all the b**. Convenient transformations of param-
eters are considered in the next section.

If possible, a transformation in spin space is
chosen in order to have a real matrix. The op-
erators T%, J,, and J, have real matrices. There-
fore, if the reference axes are chosen so that the
b* are real and B, is zero, the Hamiltonian ma-
trix is real. Unfortunately, it is usually necessary
to gather data from several orientations of the
field. For low symmetry, it will be impossible to
have a real matrix in all situations. In order to
solve the Hermitian complex matrix C=A+{B,
note that the supermatrix -

M ( A -B )

— \B A
is real and symmetrical. Since the eigenvalues of
M are those of C, each repeated once, the problem

is solved by diaé—onalizing the matrix of dimen-
sion 4s + 2.

Miscellaneous Transformations

The matrix H(- B)* of Eq. (3) is similar to
H(B) because the Kramers transformation is (anti)-
unitary. Since H (B)*is also a similar matrix,
mere reversal of the field’s direction is a similarity
transformation and magnetic resonance spectra
must display 180° periodicity as the field is per-
pendicularly rotated about any axis. Since the
Hamiltonians 3¢, and -3C, are equally valid (the
parameters are fitted to energy differences), the
above result indicates that the absolute signs of
the zero-field parameters 5* are not directly
determinable from the resonance spectra. How-
ever, they can be observed by noting changes in
relative intensities of fine-structure transitions
as the temperature is lowered.

The relative sign of 52° and 5% (and 5% and 5*%)
is always important because these parameters oc-
cur in the same matrix elements. With simple
Hamiltonians it is easily seen that the absolute
sign of 5% is inconsequential; the parameter occurs
in even powers in an expansion of the secular de-
terminant. One must be careful not to overgen-
eralize this case; the problem should be approached
by considering whether certain sign changes are
similarity transformations of the matrix. For ex-
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ample, a rotation of 37 about the z axis gives
(8%9)" = (= 1)1/ 24 pre. therefore, the sign of 5% is
unimportant only if the field is collinear with the
z axis and the parameters of odd ¢ vanish. The
usual convention is to choose 5% positive in a con-
venient reference frame. A reversal of this sign
must be accompanied by any additional changes in
3Cs brought on by the interchange of the x and -y
axes. A rotation of 7 about the z axis gives (*9)’
equal to (-1)?»*. Since the part of the Zeeman
term involving the operators J,, J, also changes
sign, a change of sign of all matrix elements of
odd Am is a similarity transformation.

APPLICATIONS TO LOW SYMMETRY

In the remainder of this work, some of the ef-
fects due to low-symmetry environments are con-
sidered. The spin Hamiltonian, given by Eq. (15),
with s =%, is assumed to possess the symmetry of
the true Hamiltonian. If possible, the reference
axes of the Hamiltonian are chosen to be symmetry

axes with the z the major axis (if any).
Special Reference Frames

Through use of relations such as Eq. (10), the
spin Hamiltonian may be expressed in terms of any
special reference frame, including those unrelated
to symmetry, in which the number of independent
parameters is reduced. Ignoring symmetry for the
moment, the most useful special frames are the
principal axes of second-rank Cartesian tensors.

Symmetric (D; =D;;) and real second-rank ten-
sors always possess principal axes; that is, an
orthogonal reference frame may be found in which
the off-diagonal components vanish and the diagonal
components (principal values) are real. It follows
fronl’ Kramers symmetry that tensors such as D
and g are real. The Hermitian property of the
spin Hamiltonian demands that D (but not Z) be
symmetric. The D,; are functions of the irreducible
parameters 5% and the 5%. Since the former is
proportional to the isotropic trace of D, it does not
affect the spectra and can be ignored. The principal
axes belong to the second-order parameters which
form the anisotropic part of D. The two indepen-
dent parameters of the principal axis frame are
b® and b%?=p%"2, the coefficients of the terms
(3)'/2[J2 - 5J%] and J2 -J2, respectively. The
utility of this reference frame will become apparent
in the next section, where it will be shown that
symmetry can designate the location of these axes.

The g tensor is potentially asymmetric and does
not necessarily possess principal axes. In the
cases in which g is found to be nearly isotropic,
it seems reasonable to ignore asymmetry. It has
been proven that the effects of asymmetry are
small as long as the anisotropy of the tensor is
small, at least for the simple problem in which the
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Hamiltonian consists solely of the Zeeman term. !’
Orthorhombic Hamiltonian

All point symmetry operations can be expressed
as either proper rotations or products of proper
rotations with spatial inversion. Because a Hamil-~
tonian such as that given by Eq. (8) is invariant to
spatial inversion, the constraints resulting from
the products duplicate those of the appropriate
proper rotations. Therefore, in order to determine
the special forms of such a Hamiltonian, we need
consider only the proper point groups O, T, and
C,, D,, n=2,3,4,6.

The unique constraints on the parameters result
from a simplest set of generators, the minimum
number of symmetry operators which generate the
group. This number is 2 for the orthorhombic
group D, and convenient choices of generators are
the twofold rotations about the z and y axes. Using
the analog of Eq. (14) for zero-field parameters
(1=0), we find that an n-fold symmetry rotation
about the z axis gives the constraint

b =ei®am/mphe (19)

Nonvanishing parameters therefore have Iql/n
=0,1,2,.... The constraint resulting from a two-
fold rotation about the y axis is

b =dj, (m) b = (= 1)*p*= (p*)* .

Equations (9) and (13) have been used. The zero-
field parameters appropriate for the group D, are
real and have |g| even (or zero). It is easily seen
that the Cartesian tensors of the spin Hamiltonian
are diagonal (with possibly independent principal
values) as long as the symmetry axes of the group
D, are chosen as the reference axes; a twofold
rotation about the ¢ axis gives

gen=g:n ==&

for £ #77. These symmetry axes are the principal
axes of the Cartesian tensors as well as the 5%,
This particular form of the spin Hamiltonian can
be called orthorhombic because it depends on the
point symmetries D,, C,,, or Dy which distinguish
crystals of the orthorhombic class from the lower
monoclinic or triclinic classes. Besides requiring
the coincidence of principal axis frames, this form
is convenient because the Hamiltonian matrix is
real as long as the field lies in the xz plane. Be-
cause the Hamiltonian [k=1, 2, 4 in Eq. (15)] con-
tains as many as eight independent parameters,
data from several field orientations will be needed
for a complete analysis. The most useful orienta-

tions are those with the field along a symmetry axis;

the Zeeman interaction can be diagonalized without
disturbing the form of the Hamiltonian. In order to

take advantage of these factors, the transformations

of parameters which result from relabeling of the
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symmetry axes are needed. Let the symmetry axes
be labeled as

(x’ ¥, Z) - (Z,, xl’yl) - (—xll’ le,yll)

if the 5™ are the zero-field parameters of the
original frame, the transformed parameters are

(blzq)l _ bk’D:q(O, %17, %Tr)* - eiq(l/zn b”df,q (%11')
and
(""" = bk"Dﬁq (%77, %ﬂ, Lir)*= et/ amlas) pho d’;q(%‘n) .

All three sets possess the orthorhombic form. The
irrational numbers involved in the transformations
can be eliminated (with the original set as an ex-
ample) by the substitutions D= (3)!/2p®, E=b%,
=70Y2p%, c2=1/2p% ct=p*  In all three
sets the * and b*** are equal. The quantities D
and E are the usual second-order parameters
found in the literature, the coefficients of the terms
JZ-3J%and J2-JZ The primed transformations
are given in Table II; other transformations differ
only by certain signs.

Although the orthorhombic Hamiltonian contains
convenient simplifications, these do not justify its
use in all low-symmetry problems; this form has
occasionally been used when the reference axes of
the Hamiltonian were merely not related by sym-
metry (x#y #z). However, for symmetries less
than orthorhombic, certain of the constraints can-
not be shown to apply. In particular, if the per-
tinent point symmetry is C, (or Cy, C,), which can
be called monoclinic after the crystal class which
cannot possess higher point symmetry, the imag-
inary parts of the 5" and the xy and yx components
of Cartesian tensors do not have to vanish. Ad-
ditionally, the asymmetry g,, #g,, may be present.
The other orthorhombic constraints hold as long
as the twofold symmetry axis, which is one prin-
cipal axis of all Cartesian tensors, is retained
as the z axis. If the point symmetry of the prob-
lem is C, or C; (triclinic), the only constraints on
the parameters are those given by the Hermitian
and Kramers properties of the spin Hamiltonian.

Spectral Symmetry

Identical spectra are obtained from experiments
with field orientations related by symmetry. This
spectral symmetry, the observable result of con-

TABLE II. The rhombic transformations for rotations

of Euler angles (0, %7, 3m).

D'=3E~3D
E'=3E-%D

0 = 1(3¢% = 20¢2 +70c?)
2= 1(c0 =42 —14cY)

c
v Il'e (c®+4c%+2c%)
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straints such as Eq. (14), can be different from
the environmental symmetry. For example, if
the spectrum possesses an angular periodicity of
27/n as the field is rotated, the axis of rotation
can be either an n-fold proper or the appropriate
improper symmetry axis. It may well be that the
spectral symmetry is higher than required because
certain key parameters are negligible. For ex-
ample, the trigonal, tetragonal, and hexagonal
forms (those dependent on the groups D;, D,, Dg)
of the spin Hamiltonian are identical for s < 1.
This spin Hamiltonian is axial; the spectrum pos-
sesses cylindrical symmetry about the major axis.
The above holds true for s =% as well when the
Zeeman term alone adequately describes the field
interactions. In exactly the same situations, the
cubic groups O and T demand an isotropic Hamil-
tonian.

Spectra obtained from the field orientations
(8, ¢) and (6, ¢ +7) must be identical when the z is
a twofold symmetry axis. Therefore, as the field
is rotated about any direction in the xy plane, the
resonant field strengths of every line in the spec-
trum must pass through extreme values as the
field’s direction passes through the twofold axis,
which can then be called a magnetic axis of the spin
Hamiltonian and the spectrum. The spin Hamil-
tonians appropriate for the point symmetries D,,
Dy, Dg, O, and T necessarily possess at least one
orthogonal set of magnetic axes. This result of
twofold symmetry is more useful than the 180°
angular periodicity in determining the symmetry of
the spin Hamiltonian, since, as we have already
observed, spectra always possess the 180° peri-
odicity (due to Kramers symmetry), as long as the
field remains perpendicular to the axis of rotation.
In the next section, an application of these concepts
is presented.

Magnetically Inequivalent Sites

It is quite common to find several paramagnetic
sites which are crystallographically equivalent and
possess a common crystal axis. Unless the
Hamiltonian of each site is axially symmetric about
the common axis, the sites are magnetically in-
equivalent for general orientations of the field, with
nonsuperimposed spectra. This can be valuable in
determining the individual site symmetry.

The case of six sites with parallel and equivalent
z axes is considered here; the treatment also in-
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cludes two and three equivalent sites and is easily
extended to four. When the field orientation with
respect to a given site is (6, ¢,), the orientations
with respect to the equivalent axes of the other
sites are given by (6, ¢'), where the ¢’ differ from
¢, by 7, £37, or + 27, Useful information can be
obtained from the following orientations:

(i) 6=0. All sites are magnetically equivalent
in this orientation, giving superimposed spectra.
This can be used as an aid in alignment of the
crystal.

(ii) 6=3m. The Hamiltonians of the pairs of sites
with A¢ = 7 differ, but only in that the field’s direc-
tion is reversed. These pairs are then equivalent
with three groups of possibly inequivalent sites.

(iii) 0<6<37. For general ¢, there may be six
magnetically inequivalent sites. However, the field
orientations for the pairs with A¢ = 7 differ by a
rotation of 7 about the z axis. These pairs are then
equivalent as long as the latter is a magnetic axis
(a twofold or a normal to a symmetry plane). In
this case, as in the second example, resolution of
each transition into at most a triplet is possible.

(iv) If the field is aligned along the x axis of the
first site (6 =37, ¢,=0), the sites having ¢' =+ 17,
+27 are all equivalent as long as either the x or the
v is a magnetic axis. We then see that if triplets
coalesce to doublets, monoclinic symmetry is in-
dicated, with the twofold or normal perpendicular
to the common axis of the sites.

(v) With the field lying in the xz or yz plane,
doublets will again be observed as long as the x,y,
and z axes are magnetic axes. This is a sensitive
indication of orthorhombic symmetry.

It should be emphasized that the above results
depend only on Kramers symmetry and twofold
symmetry axes or symmetry planes. The equiva-
lencies are proven by showing that the field’s orien-
tation with respect to one site can be obtained from
that with respect to another site by one or a combi-
nation of these symmetry transformations.

It is seen that rotational studies can be effec-
tive in differentiating between orthorhombic, mono-
clinic, and triclinic site symmetries, when the
paramagnetic ions substitute into several crystal-
lographically equivalent sites. An example for
which this is true is ferric iron doped into g-eu-
cryptite (LiAlSi0,).®!® The analysis of the ESR
spectra of this system will be presented in a later
paper.

*Present address: Corporate Research Laboratories,
Owens-Illinois Technical Center, P.O. Box 1035, Toledo,
Ohio 43601.
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A general theory of surface-plasmon excitation by electrons in the cases of electron tunnel-
ing, low-energy-electron diffraction, and photoemission is developed. Particular emphasis
has been given to the physical concepts related to the electron-surface-plasmon interaction.
The inelastic-tunneling current due to surface-plasmon emission in semiconductor-metal junc-

tions has been calculated in detail.

The surface-plasmon contributions to the inelastic spectra

in low-energy-electron diffraction and to the energy distribution curves of photoemitted elec-
trons have also been evaluated. The theory involves essentially a single parameter which

determines the magnitude of the Landau damping of the surface plasmons.

Using the value for

this parameter as deduced from Feibelman’s theory, we obtain in all cases good agreement
with available experimental results, both in magnitude and line shape.

1. INTRODUCTION

A well-known property of an electron gas is its
capacity to undergo collective motions, i.e., plas-
ma oscillations (PO). The properties of these
oscillations in the case of one material extending
over the whole space were the subject of consider-
able experimental and theoretical work. !~ In addi-
tion to these bulk plasma oscillations (BPO), the
existence of surfaces separating materials with
different electronic properties introduces new
modes of plasma oscillations localized around the
surfaces which are called surface-plasma oscilla-
tions* (SPO) or surface plasmons (SP). The SPO
can interact with electrons (or charged particles
in general) and photons and consequently may show
a considerable influence on the observable char-
acteristics of many systems. Thus the existence
of SPO has been proved experimentally, through
measurement of electron energy loss, ® u.v. radia-
tion, ® transition radiation, ""® low-energy-electron
diffraction (LEED), ?*1° photoemission, !! and super-
conducting tunneling, **!* Recently, excitations of
plasmons in a degenerate semiconductor by tunneling

electrons have been observed in metal-semiconduc-
tor junctions!®® although there is some disagree-
ment about the interpretation of the experiments.!*~%
There are some basic differences between bulk
and surface plasmons*: (a) In BP, charge density
is different from zero inside the material while
in SP only surface charge density exists. (b) The
BP are accompanied by electrostatic fields [i.e.,
no coupling to the transverse part of the electro-
magnetic (em) fields] while the fields created by
SP show a mixed character having both transverse
and longitudinal components. (c) The dispersion
relation for BP is generally determined only by the
properties of the material while for SP the geom-
etry plays a dominant role in determining their
dispersion relations. (d) The electrostatic fields
associated with BP are confined strictly inside the
material where the charge oscillations take place
while the fields created by SP are extended outside
the materials responsible for their existence.
Plasmons exist as well-defined collective excita-
tions as long as the wavelength of the oscillations
is longer than a characteristic length of the order
of magnitude of the interelectronic separation. For



